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... For whatever ratio is found to exist between intensity and intensity, in relating
intensities of the same kind, a similar ratio is found to exist between line and line,
and vice versa. For just as one line is commensurable to another line and
incommensurable to still another, so similarly in regard to intensities certain ones
are mutually commensurable and others incommensurable in any way because of
their continuity. Therefore, the measure of intensities can be fittingly imagined as
the measure of lines, since an intensity could be imagined as being infinitely
decreased or infinitely increased in the same way as a line.

Again, intensity is that according to which something is said to be “more such
and such,” as “more white” or “more swift.” Since intensity, or rather the intensity
of a point, is infinitely divisible in the manner of a continuum in only one way,
therefore there is no more fitting way for it to be imagined than by that species of a
continuum which is initially divisible and only in one way, namely by a line. And
since the quantity or ratio of lines is better known and is more readily conceived by
us—nay the line is in the first species of continua, therefore such intensity ought to
be imagined by lines and most fittingly by those lines which are erected
perpendicularly to the subject.

— Nicole Oresme, De configurationibus qualitatum et motuum
(14th century A.D.)
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Preface

Sometime toward the end of 1969 or the beginning of 1970 we came to
realize that the material covered by this treatise was of such extent that the
originally projected single volume would require two volumes. Because
most of the work in Volume I was by then complete, we concentrated on
finishing it, and it was published in 1971. There (pages 34-35) we listed the
chapter titles of the projected Volume II, which we expected to complete by
1975. Fifteen years later, when we finally brought the work to a close, our
plan had changed in several respects. First, the total body of material far
exceeded a reasonably sized second volume so, at the urging of the
publisher, the manuscript expanded into two volumes, for a total of three.
Second, the chapter on statistical methods was not written, largely because
the development of statistical models for fundamental measurement turned
out to be very difficult. Third, we decided against a summary chapter and
scattered its contents throughout the two volumes. Fourth, Volume III
came to include two chapters (19 and 20) based on research that was
carried out in the late 1970s and throughout the 1980s. Volume II discusses
or references many results that have been obtained since 1971 by the large
number of persons working in the general area of these volumes.

As in Volume I, we attempt to address two audiences with different levels
of interest and mathematical facility. We hope that a reader interested in
the main ideas and results can understand them without having to read



xiv PREFACE

proofs, which are usually placed in separate sections. The proofs themselves
are given somewhat more fully than would be appropriate for a purely
mathematical audience because we are interested in reaching those in
scientific disciplines who have a desire to apply the mathematical results of
measurement theories. In fact, several chapters of Volume II contain
extensive analyses of relevant experimental data.

Volume II follows the same convention used in Volume I of numbering
definitions, theorems, lemmas, and examples consecutively within a chapter.
Volume III deviates from this with respect to lemmas, which are numbered
consecutively only within the theorem that they serve. The reason for this
departure is the large number of lemmas associated with some theorems.

Volumes II and III can be read in either order, although both
should probably be preceded by reading at least Chapters 3 (Extensive
Measurement), 4 (Difference Measurement), and 6 (Additive Conjoint
Measurement) of Volume I. Within Volume II, Chapter 12 (Geometrical
Representations) should probably precede Chapters 13 (Axiomatic Geome-
try), 14 (Proximity Measurement), and 15 (Color and Force Measurement).
Within Volume III, much of Chapter 21 (Axiomatization) can be read in
isolation of the other chapters. Chapter 22 (Invariance and Meaningfulness)
depends only on the definability section of Chapter 21 as well as on
Chapters 10 (Dimensional Analysis and Numerical Laws), 19 (Nonadditive

Representations), and 20 (Scale Types). Chapter 19 should precede Chap-
ter 20.
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Chapter 18 OQOverview

This chapter describes briefly and somewhat informally the several topics
covered in this volume, relates them to Volumes I and II, and discusses the
advantages of the axiomatic representation and uniqueness approach taken
in this work.

The theme of Volume I was measurement in one dimension. Each
measurement structure assumed both a qualitative ordering of some empiri-
cal objects and a method of combining those empirical objects, either by
concatenation, or by set-union, or by factorial combination. Measurement
involved the assignment of numerical representations to such empirical
structures. The ordering of the representing numbers always preserved the
qualitative ordering of the empirical objects. Moreover, there was always
some numerical combination rule, involving addition or multiplication, or
both at once, which could be used to calculate the number assigned to any
allowable combination of the empirical objects from the numbers assigned
to the various constituents of that combination. In Chapters 3, 5, and 6 the
principal numerical combination rule was addition; in Chapter 4, subtrac-

1



) 18. OVERVIEW

tion; in Chapter 8, weighted average, or expectation; and in Chapters 7 and
9, polynomial combination rules with certain restricted forms.

Volume I unified measurement theory by reducing the proofs of most
representation theorems to Holder’s theorem. This reduction showed that a
common procedure underlies different methods for assigning numerical
values to empirical objects. One constructs sequences of equally spaced
objects, called standard sequences. The object to be assigned a number is
bounded between successive terms of a standard sequence. One counts the
number of terms needed to reach the target object, and the number needed
to reach an object that serves as a unit of measurement. The ratio of these
two counts approximates the desired numerical value.

Much of Volume II is devoted to geometrical representations that have
two or more dimensions, although Chapters 16 and 17 returned to one-
dimensional representations of fallible data. To some degree, additivity
continued to play a significant role in that volume; for example, consider-
able use was made of the additivity of segments along single dimensions.

Chapters 19 and 20 of this volume go substantially beyond the frame-
work of Volume I by considering one-dimensional representations that are
essentially nonadditive. Chapter 19 deals with two kinds of structure: an
ordering with a binary operation that is monotonic but can violate associa-
tivity, and a two-factor conjoint ordering that is monotonic but can violate
the cancellation (Thomsen) axiom. (The associativity and cancellation
axioms each force additivity.)

Chapter 20 goes further to consider in very general terms the possibilities
for measurement when the primitives of the structure are specified only to
the extent that one is a weak order and the others are all relations of finite
order. However, the structure is restricted by an assumption of homogene-
ity that implies a certain interchangeability of elements. In contrast to
axioms previously encountered, which are formulated in terms of the
primitives of the system, homogeneity is formulated somewhat indirectly.
For such homogeneous structures, our understanding is moderately com-
plete concerning the possible types of uniqueness that can arise, the
so-called scale types. This knowledge, coupled with fairly weak structural
constraints, is useful because it yields a detailed understanding of the types
of numerical representations that exist for homogeneous concatenation
operations and conjoint structures. Moreover, a good deal is also known
about numerical representations of structures that have neither a binary
operation nor a factorial structure.

Chapter 21 is devoted to issues (largely treated by methods of mathemati-
cal logic) concerning the formal axiomatization of measurement structures.
It also explores axiomatic issues that have arisen in all three volumes, such
as the significance of Archimedean axioms, and general logical topics,



18.1. NONADDITIVE REPRESENTATIONS (CHAPTER 19) 3

including the notion of definability, that are of particular interest to
measurement theorists.

The work on scale types in Chapter 20 and on definability in Chapter 21
leads naturally to the study in Chapter 22 of meaningful assertions within a
measurement context. It includes, among other things, a modification and
extension of parts of Chapter 10. Meaningfulness in the homogeneous case
is taken to mean at least invariance under the transformations that describe
the scale type. Various arguments are given for the plausibility of this
criterion, including the equivalence of several possible definitions of mean-
ingfulness. How the concept of invariance is best restricted to capture
meaningfulness in the more restricted sense of definability (which is criti-

cally important for nonhomogeneous structures) is an apparently difficult
and unresolved problem.

18.1 NONADDITIVE REPRESENTATIONS (CHAPTER 19)

A natural question raised by Chapters 3 and 6 is: What can be said about
concatenation and conjoint structures with nonadditive representations?
When we wrote Volume I, nearly 20 years ago, virtually nothing was known
about such structures aside from the polynomial models of Chapter 7 and
the weighted average models (which are closely related to additive conjoint
structures) arising both from bisymmetry (Section 6.9) and from the ex-
pected-utility axioms (Chapter 8). Since then, the nonadditive theory has
been developed rather fully for concatenation operations and conjoint
structures.

As in Volume I, if a structure has any numerical representation, then it
has one for each strictly increasing function on the range of the given
representation. That is, if ® is a numerical operation that represents a
structure on a subset R of the positive real numbers, and 4 is a strictly
increasing function from R onto R, then the operation © defined by

x Oy =h"[h(x) ® h(y)]

is an equally good representation. Thus the mere fact that there is a
nonadditive representation does not imply that an additive one does not
exist. But if an additive one does exist, then the nonadditivity is said to be
inessential. In this case, where, for example ® = +, then any operation
involved in an alternative representation is necessarily associative, i.e.,

xO(y®z)=(x0y)Ouz.

We are interested here in essential nonadditivity, i.e., cases for which no
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additive representation exists, and so the empirical operation is necessarily
nonassociative.

18.1.1 Examples

Nonassociative operations are neither unfamiliar nor bizarre. Averaging
is an example of a common operation that is not associative. In geometry, a
concept of midpoint algebra has been a basis of some axiomatizations (for
further discussion, see Section 19.6.5). Nonassociative algebras arose briefly
in the discussion of the Desarguesian property (Section 13.4). The familiar
vector product is another nonassociative operation. And, as will be dis-
cussed more fully, the theory of nonadditive conjoint structures, which
appears to be of potential importance in the behavioral sciences, is reduced
mathematically to the theory of nonassociative operations.

To get some sense of the theory, consider the operation @ defined on the
positive real numbers as follows. Let f be a strictly increasing function
from Re* onto Re™ that has the property that f(x)/x is a strictly
decreasing function. For x, y in Re*, define & by

x9y=yf(§)- (1)

The assumptions about f imply that the operation is monotonic in the
usual sense: if x < x",then x® y <x' ® y; andif y <y’ then x ®y < x
® y’. As will be shown in Chapter 20, Equation (1) captures all numerical,
monotonic operations in a broad class of situations.

18.1.2 Representation and Uniqueness of Positive Operations

The first issue taken up in Chapter 19 is the axiomatization of qualitative
concatenation operations that lead to a numerical representation. For
positive operations, the basic finding (Theorem 19.3) is that one can simply
drop the associativity assumption from the definition of an extensive
structure and slightly modify the Archimedean property, and still prove
that numerical representations exist, albeit with operations other than +.
Moreover, this can be done in a constructive fashion not unlike, but more
subtle than, the standard-sequence procedure used for extensive structures.
The representation can be selected to be continuous in a certain familiar
sense (Theorem 19.5). Finally, a natural definition of continuity of the
operation in topological terms is given an equivalent algebraic formulation
(Theorem 19.6).

The uniqueness result in this case differs in an important way from the
extensive case. Since we do not have any special operation, such as +,
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singled out from among the infinity of possible numerical operations that
can represent the structure, it is not immediately obvious which representa-
tion to select, thereby making it difficult to give a simple characterization of
all admissible transformations. However, for exactly one of the possible
representations, the group of admissible transformations has a particularly
simple formulation, namely, as multiplication by certain positive constants.
Put more formally, the admissible transformations form a subgroup of the
similarity group (Theorem 19.4). Recall that in the extensive (associative)
case, the additive representation has this property, with the admissible
transformations being the full similarity group. In the general case, proper
subgroups can arise. As in extensive measurement, it remains true that
when two representations of a positive concatenation structure agree at a
point, they are necessarily the same representation (Corollary, Theorem
19.2); however, it is no longer true that an admissible transformation
always exists that maps the number assigned to an object into any other
number. The special case of concatenation structures for which the admissi-
ble transformations are the similarity group (ratio scales), as in extensive
measurement, is of considerable interest. The form of those operations is
characterized in Chapter 20, and it is simply Equation (1).

An important distinction must be made between representations that
map onto Re* and those that map into it. Typically, theories involving onto
representations are appreciably simpler to formulate than are those whose
variables are into the positive real numbers. One example of this arises in
Chapter 20, where the classification of scale types is quite simple in the onto
case. Of course, little real distinction exists when a structure that maps into
Re* admits a relatively unique extension to one that maps onto Re* An
example of this is the classical (nineteenth century) extension by the
mathematician Dedekind of (Ra, > ,+,-) to (Re, >, +, ), in which
the latter is uniquely determined by the former. The general problem of
doing this now goes under the name of Dedekind completion. Concatena-
tion structures that are extendable to Dedekind complete structures are
explored in some detail in Section 19.4. The major result for positive
concatenation structures is necessary and sufficient conditions for such an
extension to exist (Theorem 19.9).

18.1.3 Intensive Structures

The tack taken for constructing representations of positive concatenation
structures works for those structures but does not generalize much beyond
that case. In particular, it is of no help for intensive structures, which,
necessarily, have idempotent operations (xOx ~ x). The weighted mean is
a prototypical example. Among other things, a standard sequence based on
concatenating an element with itself simply goes nowhere. A partial theory,
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based on the strong property of bisymmetry, was developed in Chapter 6.
Developed here is the general theory for intensive structures, which treats
the operation as inducing a conjoint structure,

(a,b) =’(c,d) iff aObxcOd.

18.14 Conjoint Structures and Distributive Operations

The general theory of binary conjoint structures follows exactly the same
pattern as in the additive case. Recall that the tradeoff structure described
by the conjoint ordering can be represented as a binary operation on one of
the components (Holman, 1971; Section 6.2.4). Under the assumptions of
additive conjoint measurement, including the Thomsen condition, the in-
duced operation was shown to form an extensive structure, and that fact
was used to develop the additive representation. Dropping the Thomsen
condition, Theorem 19.11 establishes that the induced operation looks like
two positive concatenation structures on either side of a zero element. Once
again, from the representations of the positive concatenation structures one
constructs a representation for the conjoint structure (Theorem 19.19). The
issue of how the several induced operations relate is more subtle than in the
additive case (see Theorem 19.15).

Chapter 10 treated, as a model for interlocked physical variables, a
situation involving two concatenation structures, one on a component of a
conjoint structure and the other either on the other component or on the
entire structure. We assumed the concatenation structures to be extensive,
the conjoint structure to be additive, and the three structures to be related
by a law of exchange in the former case and a law of similitude in the latter.
This work has subsequently been generalized considerably. To get the
product of powers representation needed for the vector space of dimensions
found in physics, the following will do: instead of two concatenation
structures, assume just one on a factor of the conjoint structure; instead of
extensive structures, assume a concatenation structure with a ratio scale
representation; instead of an additive conjoint structure, postulate a general
conjoint structure; and instead of a law of exchange or similitude relating
two operations and the conjoint structure, assume a simple qualitative
interlock between the concatenation and the comjoint structures, which is
called distributivity. Some results about these interlocked structures are
reported in Theorem 19.18, but the full treatment is postponed to Chapter
20 where a further generalization to ratio-scale structures that are not
necessarily based on a concatenation operation becomes possible (Theorem
20.7; for further discussion, see Section 18.2.3).
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18.2 SCALE TYPES (CHAPTER 20)

The fact that nice uniqueness results (though different from the additive
case) were obtained with generalized operations and conjoint structures has
motivated the study of the general question: What admissible transforma-
tions can arise in the theory of measurement? More can be said about that
than one might first suspect, and Chapter 20 explores what is currently
known.

The first issue is what general class of structures to consider. At present,
the theory is worked out for general ordered relational structures in which
there is a set 4 of objects, a total ordering > of A4, and a number of
additional relations R; of finite order, i.., subsets of the product 4",
where n(j) is a finite integer that is called the order of the relation. Such
structures are too general to say much of interest about them, and so a
second issue is how to impose additional constraints without becoming too
specific. The restrictions imposed in earlier chapters have always taken the
form of explicit assumptions about the relations, such as the associativity of
a binary operation. This chapter takes a different, more abstract approach.
Despite the abstractness, quite specific and concrete results are achieved
about both scale types and specific structures, such as concatenation
structures.

The restriction is formulated not in terms of specific properties of the
primitives but in terms of symmetries exhibited by the structure. The term
Ssymmetry means, intuitively, a transformation of the structure so that it
looks the same both before and after the transformation. Consider a square.
Rotate it 90 degrees in the plane, or flip it 180 degrees about a diagonal, or
flip it 180 degrees about an imaginary line parallel to two sides and half
way between; in each case there is no difference between the original and
transformed shape unless a distinctive mark is placed somewhere off center
on the square, which destroys the symmetry. These and other transforma-
tions reflect some of the appreciable symmetry of an unmarked square.
Likewise, when dealing with a more abstract structure, we can speak of its
symmetries in terms of structure-preserving maps, isomorphisms, of the
structure with itself. These representations of the structure onto itself rather
than onto a numerical system are called automorphisms. The entire set of
automorphisms forms a mathematical group under function composition.

18.2.1 A C(lassification of Automorphism Groups

The main thrust of Chapter 20 is to restrict structures indirectly by
means of explicit restrictions on their automorphism groups. Three types of
results follow. First, it is possible to arrive at very general results about the
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types of automorphism groups that can arise under these restrictions; in
particular, it becomes clear why the classification of scale types into ordinal,
interval, and ratio is natural and almost complete for all structures than can
be mapped onto the real numbers. Second, it is possible to show that the
structures exhibiting any of these automorphism groups have numerical
representations with easily described uniqueness properties. And third, if
we limit ourselves to specific classes of structures, such as concatenation
ones, the structural impact of these automorphism restrictions is easily
described.

The classification that has been proposed and found successful examines
two logically distinct aspects of the automorphism group. Consider the
fixed points exhibited by an automorphism a, ie., values a for which
a(a) = a. The first aspect is a number N such that any automorphism with
that many distinct fixed points is forced to be the identity automorphism,
for which every point is fixed. In that case, the structure is said to be
N-point unique. Thus a ratio scale, such as arises in extensive measurement,
is 1-point unique whereas an interval scale, such as arises in additive
conjoint measurement, is 2-point unique but not 1-point unique. As was
noted, positive concatenation structures are also 1+point unique.

The second aspect of the classification concerns the richness of the
automorphism group. Consider two M-tuples of points of the structure that
are ordered in the same way. Does there exist an automorphism of the
structure that maps one ordered set of points onto the other? If there does
for each pair of similarly ordered M-tuples, the structure is said to be
M-point homogeneous. The term homogeneous arises because, if the struc-
ture is at least 1-point homogeneous, no element can be distinguished from
the others by its properties. Thus a structure with a maximal element, a
minimal element, or a zero element cannot be M-point homogeneous for
any M > 1 because each of these points is characteristically different from
the remaining points of the structure. In this language, a ratio-scale struc-
ture is 1-point homogeneous whereas an interval scale is 2-point homoge-
neous. The general positive concatenation structure, though 1-point unique,
can be either 0- or 1-point homogeneous.

A natural question to raise is what combinations can arise of N-point
uniqueness, where N is the least value of uniqueness, and of M-point
homogeneity, where M is the largest value of homogeneity. For structures
with an infinity of points, it is easy to verify that M < N. The chapter
focuses primarily on those structures for which M > 1 and N is finite. A
major result (Theorem 20.5) is that for any relational structure meeting
these two conditions and having a representation onto all of the real
numbers, then necessarily N < 2. Moreover, the representation can be
chosen so that interval-scale uniqueness obtains when M = N = 2 and
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ratio-scale uniqueness obtains when M = N = 1. In the case M =1 and
N = 2, the representation can be selected so that the group of admissible
transformations is a proper subset of the affine transformations of an
interval scale and a superset of the similarity transformations for a ratio
scale. Put another way, most of the a priori possibilities simply cannot arise.
There is no one-dimensional structure that is finitely unique, homogeneous,
and can be mapped onto the real numbers (see discussion in Section 18.1.2)
for which the scale type is other than ratio, interval, or something lying in
between these two.

In addition to these cases, there are others about which we know a good
deal less. There are those that are not N-point unique for any finite N,
which are called co-point unique. An ordinal or an ordered metric scale is
an example that is also M-point homogeneous for every M, and so is said to
be co-point homogeneous. At the other end are cases that are 0-point
homogeneous. These include anything from the most heterogeneous struc-
tures to those that are highly regular, for example, structures that are
homogeneous on either side of a zero element. Little is known about how
best to classify them, though their automorphism groups have been de-
scribed.

18.2.2 Unit Representations

Both of the results just cited and those for positive concatenation
structures have suggested additional properties about the automorphism
groups. It is possible to partition the automorphisms into two types
according to whether they have at least one fixed point or not. Automor-
phisms with no fixed points, together with the identity automorphism, are
the ones that are represented by the similarity group in the theorem just
mentioned. It is shown (Theorem 20.7) that certain properties of the
automorphisms with no fixed points correspond exactly in the homoge-
neous case to the existence of a numerical representation with the same
kind of uniqueness described earlier. These are called unit representations
because of the role of the similarity group. Moreover, it becomes clear from
studying this result that the proper generalization of the concept of
Archimedeaness of an operation lies not in some easily described property
of the structure itself but in the behavior of the subset of its automorphisms
that have no fixed points. The result gives a recipe for determining if an
arbitrary homogeneous structure has a numerical representation and pro-
vides a systematic way of finding it in terms of the automorphisms of the
structure.

An additional result of importance concerns the product of powers
representation of conjoint structures so prevalent in the dimensional struc-
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ture of physics. A general definition is given for the distribution in a
copjoint structure of an ordered relational structure defined on one of its
factors. It is shown that if the relational structure has a unit representation
and the conjoint structure is suitably solvable, then distribution forces the
conjoint structure to be additive, and there is a product of powers represen-
tation (Theorem 20.8). This result, which is more general than the trinary
laws that were studied in Section 10.7, demonstrates that the extensive
structures assumed in dimensional analysis can be easily generalized to
more general structures, including nonadditive operations, so long as they
have ratio-scale representations. Thus new opportunities are opened for
adjoining nonadditive scales to physical measurement.

18.2.3 Characterization 6f Homogeneous Concatenation
and Conjoint Structures

The characterization of the possible automorphism groups in the homo-
geneous case can be brought to bear on more specific relational structures.
The two cases that have been carefully examined are concatenation and
copjoint structures. The concatenation case is the easier to describe. In
essence one shows that for homogeneous, finitely unique concatenation
structures, Equation (1) describes the class of representations in which the
automorphisms with no fixed points are represented by similarity transfor-
mations (Theorem 20.10). Moreover, the scale type is completely deter-
mined (Theorem 20.11) by considering the set of values of p > 0 for which
the following equation holds:

f(x*) =f(x)", x>0. 0y

The ratio-scale case corresponds to Equation (2) having p = 1 as its only
solution. The interval-scale case corresponds to Equation (2) holding for
any p > 0. And in the intermediate case, Equation (2) holds just for p of the
form p = k", where k is a fixed positive constant and »n ranges over the
integers.

The interval-scale case is so stringently limited that f is completely
determined except for two constants. This is used to arrive at a theory of
utility of risky alternatives that generalizes the classical subjective
expected-utility model (Chapter 8) in a possibly useful way (Theorem
20.19).

Since the general conjoint theory is closely related to that for concatena-
tion operations, it comes as no surprise that the above results are used in
formulating results for the conjoint case (Theorems 20.23-26). Since the
results are complex, we do not attempt to summarize them here. Suffice it to
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say that unless a zero element (defined as a point that is fixed in every
automorphism) is involved, there is a strong tendency for homogeneity plus
smoothness of the representation to force additivity. A simple criterion is
provided (Theorem 20.27) for ascertaining whether a numerical conjoint
structure has an additive representation; it is easier to use than that of
Scheffé (1959) (Theorem 6.4).

18.24 Reprise

The material of Chapters 19 and 20 is novel in that one does not begin
with an explicit operation, such as +, on the real numbers and then
establish a representation theorem into that numerical structure. Rather,
Chapter 19 shows for concatenation and conjoint structures how to con-
struct both the representation and a suitable operation. Chapter 20 provides
a proof schema in terms of properties of a subgroup of the automorphisms
that enables a numerical representation to be constructed indirectly, using
Holder’s theorem on that subgroup, even when no empirical operation is
available. Chapter 22 shows, among other things, that this is just the class
of structures needed to generalize the concept of a space of physical
dimensions and that invariance under automorphisms corresponds to the
usual dimensional invariance.

183 AXIOMATIZATION (CHAPTER 21)

18.3.1 Types of Axioms

We begin by noting some of the advantages of describing bodies of
empirical knowledge in an axiomatic fashion and of representing such
structures in familiar formal systems, usually numerical or geometric. For
example, just attending to this volume, the issues that will be treated are
(i) how to generalize from structures having additive representations to
those with nonadditive ones, (ii) how to understand abstractly the concept
of scale type and to describe the corresponding groups of transformations
for their real representations, (iil) how to characterize the kinds of axiomati-
zations possible for different types of structures, and (iv) how to understand
the class of propositions that can be meaningfully or invariantly formulated
in terms of the primitives of a structure. Little progress had been made
toward solving any of these problems or even formulating them clearly until
they were treated in an explicitly axiomatic-representational framework. No
one had any idea about what classes of numerical operations might arise as
representations nor any sense about what scale types there might be other
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than ratio, interval, and ordinal. It is only within a carefully formulated
axiomatic-representational context that these questions have been success-
fully addressed.

The chapter then turns to questions of a very general nature about types
of axioms and what can and cannot be done within certain logical frame-
works. Axioms in a measurement system can be grouped, as was discussed
at length in Chapter 1, into three broad types, termed necessary, structural,
and Archimedean. Typical necessary axioms are transitivity of a binary
relation that is to be represented by the usual ordering > on Re, positivity
of a concatenation operation that is to be represented by addition of
positive numbers, the Thomsen condition in additive conjoint measure-
ment, and the axiom that any two points lie on some straight line in the
classical geometries. Note that the first three examples can be formulated as
universal statements in first-order logic. For example, transitivity is for-
mally written as:

(Va)(Vb)(Ve)[(a=b & b=c) > ax=c].

the fourth example is also first-order but not universal since it involves an
existential assertion:

(Va)(Vb)EL)[ac L & b € L].

All of these are necessary in the sense that their truth is implied by the
representation that we seek in the respective cases.

The most familiar structural axioms are the solvability ones of conjoint
measurement. These, too, are existential, asserting the existence of solutions
to certain equivalences; however, they are not necessary for the representa-
tion as ordinarily formulated. A structural axiom can, usually, be converted
into a necessary axiom by imposing the structural requirements as part of
the representation, which is exactly what happens in extensive measurement
with a closed operation in which the representation is assumed to be
addition, and so is closed. In that case, the imposition of added structure to
the representation of an operation seems comparatively, though not totally,
innocent. The reason, as we know from Chapter 3, is that at the expense of
a more complex proof, it is possible to arrive at the same additive represen-
tation for a class of partial operations as for the closed ones. In contrast,
the imposition of solvability in conjoint measurement seems considerably
more deceptive because an infinity of universal axioms is needed to obtain
numerical, additive representations for nonsolvable conjoint structures (see
Chapter 9). In such cases, structural axioms are often assumed, despite the
fact that they impose constraints on the structure beyond those actually



18.3. AXIOMATIZATION (CHAPTER 21) 13

needed for the desired representation, because then a relatively few axioms
are sufficient to imply the existence of the representation and, therefore, all
of the remaining necessary axioms. Moreover, in many applications the
structural axioms are judged harmless in the sense that they appear to hold
to a reasonable degree of approximation in the intended domain.

Although the Archimedean axioms are necessary for representations in
Re or Re”, they are classed separately because they are not formulated in a
first-order logic and cannot be rewritten in such a logic (see Theorems 21.19
and 21.20). They can usually be formulated as an infinite disjunction of
first-order statements. For example, in extensive measurement, the
Archimedean axiom can be formulated as

(Va)(Vb)[la>bor2a> bor3a>bor 1,

where na > b is an abbreviation for the first-order statement that n
concatenations of a with itself exceeds b. Such axioms keep the qualitative
structures from having elements that differ only “infinitesimally,” in which
case representation in a one-dimensional numerical system is impossible.

18.3.2 Theorems on Axiomatizability

All three types of axioms have been used in measurement theory, but are
they all needed? The first mathematically rigorous response to this question
was obtained by Scott and Suppes (1958) who showed that the algebraic
difference representation for finite structures cannot be axiomatized by any
finite set of first-order universal statements. More precisely, they showed for
any such axioms, one can construct a (finite) set 4 with a quaternary
relation > that satisfies the axioms yet does not have a numerical
representation as algebraic differences. These earlier results of Scott and
Suppes are extended in Chapter 21 to obtain a negative answer for any
finite, first-order axiomatization, universal or not.

In Chapter 21 we develop the background to state and prove in a precise
form this negative result on finite axiomatization. As part of such consider-
ations, we develop in explicit form the formalism of first-order logic, which
we also refer to as the elementary formalization of theories. As part of these
developments, we also introduce the main concepts concerning models of
elementary languages, and we state without proof a number of general
theorems about elementary logic, which are used in the sequel.

We define a class of measurement structures as a nonempty class of
models of an elementary language that is closed under isomorphism and
that is homomorphically embeddable in a numerical model of the language.
We then state a number of results about the axiomatizability of measure-
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ment structures. A typical one is Theorem 21.6: the class of models of any
elementary theory that has infinite models and is such that the theory of
simple orders is interpretable in it is not a class of measurement structures.

Another section is devoted to the more restricted case, as mentioned
above, of elementary theories that can be finitely axiomatized. The kinds of
cases considered divide naturally into two: finite models that are axiomatiz-
able by a universal sentence and models that are not finitely axiomatizable.
The elementary theories with finite models that are axiomatizable by a
universal sentence lead to theorems that follow along the lines of develop-
ment begun earlier by Scott and Suppes, as mentioned above. Some results
on conjoint measurement structures of this sort are given. The deepest
result proved in Chapter 21 is an unpublished one of Per Lindstrom
concerning the classes of finite models that are not finitely axiomatizable.

Separate subsections are devoted to definability of concepts in a given
theory and to the interpretability of one theory in another. In the case of
definability, we also give a brief summary of Padoa’s method for proving
that a particular primitive concept is independent of the other primitive
concepts of a theory, i.e., cannot be defined in terms of them. This material
plays a role in Chapter 22.

18.3.3 Testability of Axioms

The last part of Chapter 21 is concerned with the testability of axiomatic
theories of measurement and of individual axioms, in relation to both finite
and infinite data structures. The discussion here does not really depend on
much logical apparatus, but it is important for the use of axiomatic systems
in the empirical sciences. One approach tries to test individual axioms in
isolation from the rest of the structure. For example, in any of the
one-dimensional structures we have talked about, one can certainly study
transitivity of the order in isolation. Equally, if an operation exists, one can
test whether it is monotonic or not. There are distinct issues depending
upon whether the data structure is conceived of as finite or infinite. A
second approach attempts to fit the representation to a set of data and
evaluates the overall adequacy of the representation. Each approach has its
merits and proponents; we discuss these.

184 INVARIANCE AND MEANINGFULNESS (CHAPTER 22)

We next use the characterization of scale type in terms of automorphism
groups, formulated in Chapter 20, to explore questions about various forms
of invariance under these transformations. Such questions were discussed
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extensively in Chapter 10 (especially Sections 10.3 and 10.10) in terms of
the controversial concept of dimensional invariance of physical laws. This is
the key to dimensional analysis, and it played a significant role in the
treatment of mechanics. Invariance arose again in Chapters 12 and 13 in
connection with the definition of a geometrical object as something invari-
ant under the automorphisms of the geometry in question (an aspect of the
famous FErlanger program) and of a physical law in geometrical models of
space-time, including both the classical and relativistic formulations. Within
the general domain of measurement, invariance under scale type has been a
major feature of the discussion of the meaningfulness of particular statisti-
cal quantities, hypotheses, and tests formulated in terms of numerical
measures. That too has generated controversy.

Of the various terms used in connection with things that are
invariant—geometrical objects, physical laws, and meaningful state-
ments—the last has come to be the generic term; so we subsume all as a
form of meaningfulness within an appropriate measurement structure. The
aim of the chapter is to define and explain several invariance concepts,
describe their significance, show how they are related, demonstrate that
dimensional invariance is invariance under automorphisms, and clarify the
relevant statistical issues in order to dispose of the existing controversy.

It will become clear, however, that certain questions remain unresolved,
in part because the needed concepts are probably not fully evolved. It is
possible that invariance under automorphisms may be the appropriate
concept for ratio and interval scales and for any scale lying between them,
but it is quite clear that it is inappropriate for nonhomogeneous structures
without rich automorphism groups. Some of the difficulties relate to the
meaning of definability in terms of the primitives of the structure together

with purely logical concepts. Such issues are described in Sections 21.2.4
and 22.5.

184.1 Types of Invariance

A natural concept of invariance within the context of measurement arises
by considering relations formulated within a numerical representation. For
each representation, one can find the qualitative relation corresponding to a
particular numerical relation. If that qualitative relation remains invariant
as the numerical homomorphism is altered, we say the numerical relation
exhibits reference invariance. This concept is more slippery than it first
seems. One aspect, illustrated in the case of Hooke’s law, is the role of
dimensional constants.

At least two other notions of invariance have arisen. One is the invari-
ance of a qualitative relation under endomorphisms, which are homomor-
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phisms of the structure into itself. This is called structure invariance.
Another focuses on the notion of admissible transformations within the
numerical representation and imposes the condition of invariance of the
numerical relation under them. Theorems 22.3-5 explore the conditions
under which these three concepts are identical. A sufficient condition is that
the structure be homogeneous and 1-point unique.

18.4.2 Applications of Meaningfulness

The two most important areas to which the measurement-theoretic con-
cept of meaningfulness has been applied are statistics and dimensional
analysis.

Controversy about meaningfulness considerations vis-a-vis statistical
practice has centered largely on whether such considerations are relevant at
all, and if so, under what circumstances. Section 22.6 reviews the various
positions that have been taken. According to our analysis of the problem,
measurement considerations relate to statistical inference in just one way;
namely, that any statistical hypothesis formulated in terms of the measures
should be meaningful within the measurement system being used. This
appears to be the only constraint imposed by measurement considerations.
In particular, one may sometimes find a monotonic rescaling that produces
population distributions within a specified family, e.g., the Gaussian, and
another monotonic rescaling that provides an attractive combination rule
relative to conjoint structure or to a concatenation operation. Both rescal-
ings may be unique up to the same class of transformations, e.g., affine
ones, but be related only by a monotone transformation unconstrained
by theory.

As we have seen in Chapter 10, there are two major problems in
understanding how dimensional analysis arises out of fundamental mea-
surement theory. One is to construct from a set of one-dimensional struc-
tures describing distinct attributes the multiplicative vector space represent-
ing all physical (and possibly other) measures. The other is to improve our
understanding of why the condition of dimensional invariance is imposed
on physical laws.

Chapter 10 offered one possible way to construct the vector space. The
construction is redone in Theorem 22.8 using the considerably more general
results of Chapter 20 on distribution of unit structures in conjoint ones.
This formulation, unlike the earlier one, is not restricted to extensive
operations on components of an additive conjoint structure nor to the
specific types of interlocking laws. Second, it is shown that dimensional
invariance within that framework, involving invariance under the transfor-
mations called similarities, is equivalent to a family of systems related by
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automorphisms of the qualitative structure represented by a vector space.
Such a family constitutes a meaningful (automorphism-invariant) relation
within that structure.

Included in this material is a detailed discussion of the significant
differences between a measurement-theoretical analysis of an attribute and
the uses of indices to substitute for such an analysis. Typical examples are
attempts to use physical ratio scales, such as time intervals, as indices for
various poorly understood attributes of human performance. We attempt
by example to make clear why the scale type of the index does not
necessarily carry over to the attribute being indexed.

The last section focuses in a general way on the problems of constructing
some representation of a structure and on the uniqueness of that construc-
tion. The two issues are closely intertwined. In many cases it is possible,
and sometimes easy, to establish the existence of a representation in a
nonconstructive fashion. From an empirical point of view, such a result is
not entirely satisfactory because it provides no way to approximate the
representation to a particular level of accuracy. For that reason, measure-
ment theorists go to some pains to arrive at constructive proofs that can
actually be used to devise approximation procedures. Unfortunately, such
proofs are often a good deal longer and more tedious than the nonconstruc-
tive ones. Moreover, in- some instances no such proofs have yet been
devised.



Chapter 19 Nonadditive Representations

19.1 INTRODUCTION

Most work in the theory of measurement has been based on additive
representations for various kinds of structures. There are good reasons,
however, for also studying structures in which the numerical combination
rules are intrinsically nonadditive. In this introduction we begin with a
discussion of nonadditivity in its various guises. Then we sketch the
approach to nonadditivity pursued in this chapter; namely, representation
by nonadditive binary numerical operations. Finally, we give an overview of
the five major parts of the chapter.

19.1.1 Inessential and Essential Nonadditivities

Conjoint structures are common in the sciences, arising whenever an
ordered outcome depends on two or more independent variables and also in
other, less obvious ways. We need to distinguish three types of numerical
representations for conjoint structures: additive representations, nonaddi-
tive representations that can be transformed to additive, and representa-
tions that are essentially nonadditive.

In Volume I (e.g., Sections 3.9, 442, and 6.5.2), we discussed the
possibilities of alternative numerical representations for structures that do
have additive representations. The most obvious and useful example is the

18
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transformation by exponentiation of an additive representation into a
multiplicative one. More generally, any strictly monotonic transformation h
transforms addition, x + y, into the nonadditive binary numerical opera-
tion,

u® v =h""[h(x) + h()]. 1)

That is, instead of representing the two factors by scale values x, y, which
add, one could just as well use the scale values ¥ = A~1(x) and v = h~Y(y),
replacing addition by the numerical binary operation ® defined by Equa-
tion (1). Any numerical operation obtained by such a transformation has
the same key mathematical properties as addition: associativity and com-
mutativity.

The choice of addition or multiplication, rather than some alternative, is
from a purely mathematical viewpoint fundamentally a matter of conven-
tion; however, powerful pragmatic considerations, such as ease of computa-
tion, often dictate the choice. If for some reason a nonadditive alternative is
selected, such nonadditivity is said to be inessential.

Closely related to the above are cases in which a seemingly natural
numerical scale exhibits interactions among variables, but such interaction
can be eliminated by a monotonic transformation of the scale. As an
example stemming from psychology, consider a two-factor conjoint struc-
ture in which the probability Q of solving a particular problem depends
both on D, the difficulty of the problem, and on T, the level of training of
the problem solver. These two independent variables may interact, in part
because very easy problems have a high probability of being solved, even
with little training; so there is not much room for Q to increase with T.
Likewise, very hard problems have a low Q even at high levels of T; so
there is not much room for Q to decrease at lower levels of T. In this
example, the interaction can be reduced by transforming the probability
scale monotonically to obtain a scale that has more room at the top and
bottom. The logit transformation Q — log[{Q/(1 — Q)] is often used. One
can test the axioms of two-factor additive conjoint measurement to deter-
mine whether any monotonic transformation of Q exists that will eliminate
the interaction, resulting in a formula of the form h(Q) = x(T) + y(D).
But if the interaction can be eliminated by a monotonic transformation h,
then one can also elect to preserve the original scale Q, replacing x(T') by
u(T) = h~[x(T)] and y(D) by v(D) = h~[y(D)] and replacing + with
the binary operation @ of Equation (1). Again, it is a matter of convention
whether one chooses the “natural” scale Q with the nonadditive but
associative binary operation @ or the transformed scale #(Q) with addition
as the operation.
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Not every interaction can be eliminated by a monotonic transformation,
however, and indeed there are many cases in which it is doubtful if
additivity affords an adequate representation for conjoint structures. Such
nonadditivity is called essential and corresponds to a nonassociative opera-
tion. As was noted in Section 18.1.1, operations that are essentially nonad-
ditive are by no means unusual in the sciences. A striking example is vector
product. If x ® y denotes the vector (or cross) product of vectors x and y,
then neither associativity nor commutativity hold. In their stead are the
Jacobi identity,

x®y)®z+(y®z)®8x+(z®x)®y=0,
and skew symmetry,
x®y=—(y ®Xx).

Another familiar nonassociative example is weighted averages.

Even when an additive representation can be used as a first approxima-
tion, the interactions among variables may be of considerable theoretical
interest. To illustrate this, consider again the example of difficulty and
training factors in problem solving. Suppose that there exists some domain
of problems such that the probability Q of correctly solving each problem
can be expressed as a product of two factors: the probability S of selecting
the correct algorithm times the conditional probability E of executing that
algorithm properly after selecting it. Each of the two latter probabilities, in
turn, depends on the two empirical variables, difficulty and training. These
two dependencies might in turn be described by additive models using logit
scales. Thus the complete model might look like this:

0 = SE, (2a)
logT— = /(T + 5(D), (20)
log1 —z " k(T) + /(D). (2¢)

It can be shown (Exercise 1) that the relation specified by Equation (2)
between the probability Q of correct solution, the training level T, and the
difficulty level D, is essentially nonadditive for general choices of f, g, k,
and /. There is no monotone transformation % such that h(Q) can be
expressed as the sum of a function of T and a function of D except for
special cases in which the functions k and !/ are related to the functions f
and g in a particular way that eliminates the nonadditivity.
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Of course, it might be argued that Q is simply the wrong thing to
measure; rather, the probabilities S and E should be observed separately.
These depend additively on T and D and are more fundamental. That
might be possible in the above example: one could ask a person first to
select an algorithm for a problem, and if the correct one is selected, then
one could ask the person to execute the algorithm and obtain the solution.
But there could be other examples in which intervening processes are less
observable. What is illustrated here is a way of generating a broad class of
examples of two-factor conjoint structures for which additivity fails. The
observed measure may depend on several unobservable factors, each in turn
depending in a different way on the two empirically specifiable variables.
Even if all component dependencies are essentially additive, as in Equation
(2a—c), the overall dependency is most likely essentially nonadditive. More-
over, the process might be repeated for some of the component dependen-
cies; why should they be additive any more than the overall relation? In the
example above, only the multiplicative relation Q = SE has a clear justifi-
cation.

The methods to be discussed in this chapter apply to a broad class of
nonadditive combination rules in which the dependency of an ordered
outcome on two factors can be expressed as a general function of two
variables, monotone in each. In the above example, the general equation
would take the form

Q= H[f(T), g(D)]. (3)

This is the equation of decomposability, treated in Chapter 7 and here
specialized to the case of two variables. In particular, the model of Equa-
tion (2) falls under this rubric whenever the functions k and / are monoton-
ically increasing functions of f and g, respectively. More generally, if an
observed measure depends monotonically on several unobservable vari-
ables, each of which depends on the same two empirically specifiable
variables, with all these dependencies covarying monotonically, then the
overall relation will satisfy decomposability.

Volume I treated three kinds of essential nonadditivity: weighted-average
representations (Section 6.9), polynomial combination rules (Chapter 7 and
Sections 2.2.7 and 9.5) and, very briefly, decomposability (Section 7.2).
Averaging is a nonassociative binary operation, nonetheless, it can be
treated via additive conjoint measurement as was done in Section 6.9. A
generalization of that procedure is presented in this chapter (Theorem 21,
Section 19.7.2). The polynomial results concern only addition and multipli-
cation, but even so, the analysis in Chapter 7 was restricted to a special
subclass of polynomials. The results in Chapter 7 for general decomposable



22 19. NONADDITIVE REPRESENTATIONS

structures are quite weak. The essential innovation discussed in this chapter
is to treat two-variable decomposability from the standpoint of binary
operations that are not necessarily associative. Because of the nonassociativ-
ity, the nonadditivity is essential: the operation cannot be converted into
addition by the inverse of Equation (1). This approach is suitable for
empirical relational structures that have a binary concatenation operation
and for two-factor conjoint structures. It has not yet been generalized to
more complex situations.

19.1.2 General Binary Operations

We shall consider numerical representations using a quite general binary

operation ® in place of +. One of the simplest examples is the general
linear operation

x@y=rx+sy+t, )]

which is used in the representation of bisymmetric structures (see Sections
6.9 and 19.9). Here, r, s, and ¢ are constants, with r and s positive. With
t=0 and r + s =1, this corresponds to a weighted average, which is
commutative only if r = s = 1/2 and is never associative. Another sort of
example is the equation

xX®y=x+y+ x%Yt, x,y>0, a,f>0 (5)

The operation defined by Equation (5) is commutative if and only if a = .
A little less obviously, it is associative if and only if a and B are both 0 or
both 1. Still another class of examples can be obtained by regarding
Equation (2) as the definition of a binary operation.

One consequence of considering arbitrary binary operations is that the
representation problem and the uniqueness problem become conceptually
more distinct than they were in Volume I. The representation problem is
best thought of as one of discovery: what operation ® (if any) can be used
to give a numerical representation for a particular empirical structure?
Naturally, if there is some operation that can be used, then there are many,
just as alternatives to + are generated by arbitrary monotonic transforma-
tions h of Re. But the conditions under which some operations can be
found are much weaker and easier to discover than are the conditions for a
prespecified operation. The uniqueness problem, on the other hand, is best
thought of as a problem of scale construction: given the form of the desired
representation, including a specification of the operation ®, how firmly is
the numerical representation determined?



19.1. INTRODUCTION 23

The results most easily obtained concern the number N of distinct points
needed to pin down a representation uniquely. Such a representation is
called N-point unique. For example, the ratio scales that arise in extensive
measurement are 1-point unique since the entire representation is deter-
mined by specification of a unit. And interval scales, being determined by
the choice of a zero and a unit, are 2-point unique. (As we shall see in
Chapter 20, the possible values of N for structures that map onto the real
numbers are very limited.) Results about uniqueness are proved construc-
tively: a method is given whereby once the numerical values for N distinct
elements are selected, the other scale values can be constructed to any
desired degree of approximation.

19.1.3 Overview

Section 19.2 presents some general definitions and examples that are used
throughout the chapter. The remainder of the chapter covers five main
topics. Clearly, the first task is to establish some general results about
nonassociative binary operations. This can be done in an abstract setting
without necessarily assuming that the operation is defined for real numbers;
and thus we obtain a generalization of the theory of extensive measurement
(Chapter 3), in which a binary operation O, not necessarily associative, is
represented by some binary numerical operation ®, also not necessarily
associative. The theory should specialize to that of Chapter 3 when the
operation is associative. The concatenation operations considered in this
first part are order preserving (monotonicity axiom) and positive, i.e., a O b
is always larger than both a and b. In addition, two more technical
properties (restricted solvability and Archimedean properties, defined in the
next section) are assumed. The acronym PCS (positive concatenation struc-
ture) is employed for this generalization of extensive structures.

We do not know of direct applications of PCSs that arise as “naturally”
as the associative ones employed in extensive measurement of mass, length,
and time duration. Nonetheless, there are good reasons for studying them.
The intellectual problem is interesting and not obvious; the results are
needed for understanding the numerical PCSs that will be used as represen-
tations for various structures; there are important indirect applications to
both conjoint measurement and intensive measurement (which are the third
and fourth main topics of this chapter); and perhaps, with the machinery in
place, some direct applications ultimately will be found.

The striking result of this initial part is that associativity of the concate-
nation operation O can simply be dropped; hardly any other modification
of the extensive measurement axioms is needed to obtain nearly the same
representation and uniqueness theorems, with a general numerical opera-
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tion ® in place of + or The most notable change is in the uniqueness
theorem. In the context of the additive, associative theory, uniqueness could
be described in either of two equivalent ways. The one is to say that once
the value of a single element is specified, the representation is unique. The
other is to say that any two representations are related by multiplication by
a positive constant. For the more general structures considered in Section
19.3, these two notions are no longer equivalent, and it is the former
(1-point uniqueness) that arises most naturally. The proof of 1-point
uniqueness specifies a constructive procedure for measurement: given the
numerical value assigned to a single element in the concatenation structure,
we show how to determine the numerical value assigned to any other
element. Later in the chapter we consider 2-point uniqueness (in place of
interval scales); and, more generally we consider N-point uniqueness in
Chapter 20, where we present results concerning permissible transforma-
tions and their relation to N-point uniqueness properties.

Complete clarification of the uniqueness issue takes place through the
study of the automorphism groups of measurement structures. The reason
for their importance is that each automorphism of a structure generates a
permissible transformation of any representation (although the converse is
not true in general). An important theorem asserts that the automorphism
group of any PCS is isomorphic to a subgroup of the additive reals (Section
19.34). The consequences of this and related theorems are discussed,
though the full development of these consequences appears in Chapter 20,
which is about scale types.

The second topic involves studying those PCSs that, like most physical
models, can be represented by an (often infinite) interval of real numbers.
Of special concern are the conditions under which a given PCS can be
densely embedded, much as the rational numbers are in the reals, in a larger
PCS that is isomorphic to a real interval and, in particular, such that the
automorphisms extend in a natural way. This problem is only partially
understood.

The third main topic of the chapter is the analysis of nonadditive
conjoint structures. Just as in the additive version, a two-factor conjoint
ordering induces an ordering of intervals on each factor, and thence, a
concatenation structure can be-defined for each factor. The results for PCSs
can be applied to these defined concatenation structures to obtain nonaddi-
tive, two-factor conjoint measurement. The major departure from the
additive case is that this procedure does not generalize readily to three or
more factors. With three factors, a PCS can be defined over one factor in
terms of a second factor with the level of the third factor held constant. But
without additivity, different choices for this constant level lead to different
and nonisomorphic PCSs. Hence, additional work is needed to clarify the






